
P41 RR00785-09 Appendix A

Appendix A

Interlisp-VAX Study Report

Addendum to
Interlisp-VAX: A Report

STAN-CS-81-879
(HPP-81-14)

Dave Dyer
University of Southern California

Information Sciences Institute
Marina de1 Rey, California

January 20. 1982

Since Larry Masinter's 'Interlisp-VAX: A Report" is being circulated
widely, it is important that it be as accurate as possible. This note
represents the viewpoint of the implementors of Interlisp-VAX, as of
January, 1982.

The review of the project and the discussions with other LISP
implementors that provided the basis for the Report took place in June,
1981.

We believed at the time, and still believe now, that the Masinter
Report is largely a fair and accurate presentation of Interlisp-VAX, and of
the long-term efforts necessary to support it. We now have the advantage
of an additional 6 month's development effort. There are some areas where
progress and performance have been better than anticipated in the Report,
and we would like to report on our current status.

AVAILABILITY AND FUNCTIONALITY

Interlisp-VAX has been in use for testing purposes both here at IS1
and at several sites around the ARPANET, since November, 1981.

We are planning the first general release for February, 1982--ahead
of the schedule that was in effect in June, 1981.

The current implementation includes all of the features of Interlisp-
10 with very few exceptions. There is no noticeable gap in functionality
among Interlisp-10, Interlisp-D and Interlisp-VAX, except for features that
are inherently peculiar to some implementations (e.g., windows on the
Dolphin, JSYS and TENEX on the PDP-10).

Among the Interlisp systems we are running here are KLONE, AP3,
HEARSAY, and AFFIRM.

251 E. A. Feigenbaum

Appendix A P41 RR00785-09

PERFORMANCE

Masinter's analysis of the problems of maximizing performance was
excellent, both for Interlisp generally and for the VAX particularly. It
is now reasonable to quantify the performance based on experience with real
systems. The analysis of the performance of Lisp programs is quite
complex, and single numbers are often more misleading than representative.
It is hard to give a complete analysis, so we will only give general
performance numbers.

CPU speed (on a single-user VAX/7801 is, for many of the programs we
have measured, currently in the range of l/4 the speed of Interlisp- (on
a single-user DEC 2060). We believe that a factor of two overall
performance improvement is achievable.

Currently, it seems reasonable to allow 1 MByte real memory per
active user.

E. A. Feigenbaum 252

P41 RR00785-09 Appendix A

Interlisp-VAX: A Report

Larry Masinter
Xerox Palo Alto Research Center

Palo Alto, California

August 1, 1981

Contents:
I. Introduction
II. Interlisp-VAX: Overview and Status
III. What will Interlisp-VAX be like?
IV. Conclusions

The views expressed in this report are those of the author; they do not
necessarily reflect those of the Xerox Corporation, Stanford University, or
the University of Southern California.

This study was funded in part through the SUMEX Computer Project at
Stanford University under grant RR-00785 from the Biotechnology Resources
Program of the National Institutes of Health.

I. INTRODUCTION -

Since November 1979, a group at the Information Science Institute of
the University of Southern California has been working on an implementation
of Interlisp for the DEC VAX-series(l) computers. This report is a
description of the current status, future prospects, and estimated
character of that Interlisp-VAX implementation. It is the result of several
days of discussion with those at IS1 involved with the Implementation (Dave
Dyer, Hans Koomen, Ray Bates, Dan Lynch); with John L. White of MIT, who is
working on an implementation of another Lisp for the VAX (NIL); with the
implementors of Interlisp-Jericho at BBN (Alice Hartley, Norton Greenfeld,
Martin Yonke, John Vittal, Frank Zdybel, Jeff Gibbons, Daryle Lewis); with
the implementors of Franz Lisp and Berkeley Unix(2) at U.C. Berkeley
(Richard Fateman, Bill Joy, Keith Sklower, John Foderaro); and with my
colleagues at Xerox PARC.

An earlier draft of this report was circulated to the parties
involved in the Interlisp-VAX discussions. This document has been revised
as a result of comments received.

Why Interlisp-VAX? In early April, 1981, a meeting was held at SRI of
ARPA-sponsored or related Lisp users, to discuss the status and future of
Lisp. Those of the community who were current Interlisp users felt
strongly that: (1) there was a need for Interlisp to continue to be a
viable programming environment in the 1980's. strongly standardized among
all implementations; and (2) the most important new implementation of

253 E. A. Feigenbaum

Appendix A P41 RR00785-09

Interlisp would be for the VAX. There were several reasons for the choice
of both the VAX and Interlisp.

why VAX? The primary reason is that many sites already have VAXes,
where they= and will continue to be used not only for Lisp and AI
research, but also for use as general purpose, time-shared computing
resources, for running FORTRAN, business computing, etc. The VAX is
considered to be the most important 'technology transfer" vehicle for
Interlisp AI programs in the early through mid '80s: it is already spread
widely throughout industry aqd industrial laboratories; and it is very
widespread among ARPA's military clientele. It is unlikely that researchers
who develop application-oriented AI systems in Interlisp will want to re-
implement them in some other language, and it is unlikely that these
institutions (private and military) will buy machines specifically for AI
programs if those programs constitute only an occasional part of their
computing needs. The VAX is believed to be the most likely vehicle for
transferring applications to those institutions.

In addition, VAX (for better or for worse> appears to be the machine
that many computer science departments around the country have chosen for
their "next generation' machine. Insofar as there is a need to spread the
concepts and software technologies developed in Interlisp to these
departments, it is believed that there is a need to have Interlisp running
on the VAX.

CJhy Interlisp? The Interlisp programming environment has been in wide
use in the Artificial Intelligence community for a number of years. It is a
powerful, Integrated environment, having evolved over the years into a
stable system. The availability of multiple, compatible implementations on
a number of machines means that researchers can easily transport their
programs from any implementation to another.

report? Because of the perceived importance of Interlisp-VAX
to the community, and because of my experience with Interlisp and its
implementations, I was asked by Stanford and ISI to evaluate the status of
the on-going'project at ISI, and to estimate the magnitude of the tasks
remaining, expected performance and character of the resulting product.
Many ongoing research institutions are making plans for their future
computational requirements, and many of the decisions about choice of
programming language and hardware hinge on the prospects for Interlisp-VAX.
In light of the large amount of confusion in the community about the future
availability of Interlisp on a VAX, it was thought important to have an
outside assessment of the future of the project.

II. INTERLISP-VAX: OVERVIEW AND STATUS --

A. Project definition and history

While the Interlisp-VAX project started in November 1979, most of the
first year was taken up with project startup and training of personnel
(none of the project members were originally familiar with the C
programming language, UNIX, or Interlisp, either as a programming

E. A. Feigenbaum 254

P41 RR00785-09 Appendix A

environment or its overall implementation). Thus, most of the work on the
implementation to date has been accomplished since November 1980.

The goal of the project has been to produce a version of Interlisp
which runs on a VAX, which:

Is as compatible with Interlisp- as practical. --
While it is difficult to give a metric for compatibility, the goal of the
project is that most Interlisp programs in the community will run In
Interlisp-VAX merely by recompiling them. At a bare minimum, the Interlisp-
VAX code must run the standard Interlisp packages such as the Interlisp
Editor, Masterscope, Break Package, Record Package, DWIM, CLisp, and so
forth.

Uses the extended virtual address space of the VAX. ---
Koithe primary motivations for investing in the VAX is that the VAX
potentially has a large (at least 2**30 bit) address space. Many Interlisp-
10 users long ago have run out of address space, and spend much of their
time trying to squeeze programs into available address space.

Has adequate performance.
Tha Lisp produced Is expected to make reasonable use of the hardware. It is
difficult to give a single number which describes the performance of a
system (because some things will run faster and some slower), but the
average performance of Interlisp-VAX must be within a factor of 2 of other
Lisps which run on the VAX (e.g., Franz and NIL). In addition, Interlisp-
VAX must be competitive in price/performance to a DEC-20 for the size of
programs which it is now able to run, and also be able to handle larger
programs.

B. Summary of the Interlisp-VAX architecture - --

Interlisp-VAX is a non-microcoded implementation more similar in
architecture to Interlisp- than Interlisp-D or Interlisp-Jericho. This
is appropriate for the VAX, which has a powerful "native. instruction set
and is time-shared between a number of users, not all of whom would be
running Interlisp. Interlisp-VAX is intended to run on top of the Berkeley
Unix operating system. Unlike Interlisp-10, in which the kernel is written
in assembly language, the kernel of Interlisp-VAX is written in the high-
level systems implementation language C. This might well simplify the
transportation of Interlisp-VAX to another machine which had a C compiler
and similar characteristics (byte addressable memory, UNIX, 32-bit
registers).

Without going into great detail, the important aspects of the
Interlisp-VAX architecture are as follows: deep binding; full
implementation of 'spaghetti stacks"; compilation to VAX native code (with
no "block compiler.); memory allocation in 64 KByte "sectors" with sector-
table giving type per sector; no CDR-coding (CONS cells take 64 bits); a
'stop and copy" garbage collector; 31-bit immediate integers (with plans,
but no implementation, of 'bignums'). These design choices seem reasonable
for the VAX, with exceptions noted below in the section on performance.

255 E. A. Feigenbaum

Appendix A P41 RR00785-09

Interlisp-VAX has the following component pieces:

1. Machine-independent "higher-level" Interllsp code. This includes,
for example, the Interlisp editor, file package, the Masterscope
program analyzer. This code is shared, intact, with Interlisp-10,
Interlisp-D and Interlisp-Jericho.

2. Interlisp-D code. This is Lisp code which, although shared with
Interlisp-D (and Interlisp-Jericho), is not used In Interlisp-10.
For example, the implementation of Terminal Tables and Read
Tables may be shared with the other Interllsp Implementations.

3. VAX-specific Lisp code. This code is necessary to interface to
the C kernel and perform other VAX-specific operations. For
example, the implementation of the DATATYPE package, while in
Lisp, must satisfy constraints placed by the Interlisp-VAX
garbage collector, and thus has some essential differences from
the version of the DATATYPE package for other Interlisp
implementations.

4 g kernel. The C kernel handles memory management, garbage
collection, the interpreter, 'Spaghetti stack" support (Including
FUNARGs, RESUME for processes/coroutine support), bootstrapping
and Interface to the operating system.

5. Lisp/C interface. A small amount of VAX machine code is necessary
for the interface between Lisp and code generated by the C
compiler. Primarily of interest here is the code which is part of
function call and return.

6. VAX code-generator. The VAX native-code generator takes the
output of the Interlisp-D Byte-Compiler and generates VAX native
code. The Byte-Compiler [Masinter & Deutsch 19801 is a machine
Independent optimizing compiler which produces intermediate
‘linearized lisp' code for an abstract stack machine.

C. Current implementation status of Interlisp-VAX: what's been done? - -- ---

Many of the major design decisions for Interlisp-VAX have been made,
including layout of memory, Important code sequences (e.g., function call
and return for all of the various cases), representations of pointers and
system data types, and many parts of the interface to the operating system.
In addition, the following tasks have been accomplished:

I. Higher level Interlisp software. The 'shared' Interlisp software
has been examined, and a few problems identified and fixed; the
rest will run In Interlisp-VAX with little change.

2. Interlisp-D code. An initial pass over the Interlisp-D code
identifying which portions can be shared has been made.

E. A. Feigenbaum 256

P41 RR00785-09 Appendix A

3. VAX-specific Lisp code. The major pieces which have been written
are a version of the DATATYPE package, an array package, and the
compiled code loader and parser.

4. C kernel. Most of the C kernel has been completed, in the sense
<hat the code Is there and has passed preliminary tests.

5. interface. Lisp/C This has been completed.

6. VAX code-generator. A first version of the VAX code generator has
baen produced and, to a great extent, debugged. The important
design decisions about function call sequences, as well as some
of the important open-coding sequences (e.g., CAR and CDR), have
been made.

D. Tasks remaining in existing code

1. Higher level Interlisp software. Problems may arise in
implementing Interlisp's notions of files, versions, and dates
under UNIX; if so, it may be necessary to fix those portions of
the Interlisp higher-level software to be more implementation
independent.

2. Interlisp-D code. Unfortunately, Interlisp-D is a "moving target"
and it is difficult to rely on the sources staying compatible.
Insofar as code is shared between Interlisp-D and Interlisp-
Jericho, the same code will most likely run under Interlisp-VAX.
Problems may arise insofar as the lower levels of Interlisp-VAX
differ.

3. Vax-specific Lisp code. The DATATYPE implementation requires some
work. The array package seems to be relatively complete, although
the program has not been extensively tested. The compiled code
loader/parser has been completed and tested in ncross-
compilation" mode, while running in Interlisp-10.

The VAX/UNIX I/O package still requires much work. The interface
between Interlisp and UNIX is to be accomplished via (1) the
Interlisp-D FILE10 package, which gives an interface to buffered,
random access files from higher level Interlisp software, (2)
some VAX-specific Lisp code, which then interfaces to (3) some
pieces of the C kernel. The interfaces between many of these
pieces are being designed, but some of the pieces have not been
written.

There is a body of the Interlisp environment which, although
nominally not part of the *core' of Interlisp, forms a useful
part of most of its implementations. For example, the DIRECTORY
package and GETFILEINFO are Interlisp- facilities which, while
not part of the Moore VM document, can be implemented in
Interlisp-VAX, are part of Interlisp-10, Interlisp-D and
Interlisp-Jericho, and are used by Interlisp application
programs.

257 E. A. Feigenbaum

Appendix A P41 RR00785-09

4.

Interface with UNIX's notion of terminals and interrupts has been
considered, but the final details have not been worked out.
Initial versions of Interlisp-VAX will have a very simple notion
of interrupts.

C kernel. Future changes will likely be required depending on the
needs of the Lisp-level I/O package, interrupts, and a new
version of UNIX which will allow Interlisp to use the high end of
memory. The C kernel contains some especially 'tricky" areas:
interpreter, stack management and garbage collection. These were
not completed as of June 1981. Experience with other
Llsp/Interlisp implementations has been that debugging and
complete testing are dlfflcult. Bugs often are found in the
handling of obscure and rare cases, as the code interacts with
many other parts of the system. I expect Interlisp-VAX to have
its share of problems in these areas.

5. Lisp/C interface. Changing the Lisp/C interface will only be
necessary in response to fixing some of the expected "performance
bugs" of Interlisp-VAX, e.g., free-variable-pointer-caching
(discussed below) may require changes in the function-call
sequences.

6. VAX code-generator. My examination of the Vax code generator
uncovered a few minor problems due to 'a misunderstanding of
conventions required by the ByteCompiler, and undoubtedly a few
more will surface.

More importantly, the current code generator for VAX native code
will (as planned) require much work to bring it to the point
where it generates production-quality code. In particular:

a. A register-allocating version of the code generator (in some
ways a complete rewrite) would significantly improve
performance on the VAX.

b. A 'peephole optlmizern for VAX instructions would enable
Interlisp-VAX to take advantage of the VAX's complex
instruction repertoire.

c. More 'open' compilation of frequently used routines will be
necessary in many circumstances. Although many open-coding
sequences have been Incorporated, adding more will of course
require additional time and effort.

d. Modification of the ByteCompiler to suppress boxing of
intermediate results would have payoff in speed for integer
calculations and space for floating arithmetic.

E. A. Feigenbaum 258

P41 RR00785-09 Appendix A

E. Other areas requiring work ---

In addition to the areas outlined above, a number of other areas need
attention:

I. Free variable pointer caching. There is a very serious
performance problem in Interlisp-VAX, the correction of which
will require major changes to the Interllsp-VAX system.
Interlisp-VAX uses deep binding. While deep binding Is a
reasonable choice for Interlisp-D (because of microcoded free
variable lookup) it may be a source of a large performance
penalty in Interlisp-VAX, especially in interpreted code. In any
case, there is currently no mechanism for ‘caching’ free variable
pointers, and so free varlables are *looked up” at every
reference, even within an Inner loop. This is clearly
unacceptable. A design needs to be worked out and integrated into
the compiler and stack access mechanism. No one scheme is clearly
optimal. It Is clear that whatever scheme is chosen will require
changes to the compiler, interpreter, garbage collector and stack
manipulation routines.

2. Bootstrapping. Bootstrapping is as complicated in Interlisp-VAX
as it is In other Interlisp implementations for a variety of
reasons. For example, debugging “low level” pieces of the system
is made more difficult because bootstrap-load order requirements
are difficult to detect without running the (time consuming)
bootstrap process. This traditionally is merely a source of
frustration rather than an insurmountable barrier.

3. Documentation. Documentation of Interlisp-VAX discussing its
differences from other Interlisps and areas such as interface to
UNIX is needed. In addition, there is some intention to
participate in the upcoming major revision of the Interlisp
Reference Manual.

4. Access to UNIX facilities. --- Interface from Lisp to UNIX facilities
such as pipes, processes, Shell programs will greatly increase
the utility of Interlisp-VAX. These facilities are not necessary
for running current Interlisp- programs except insofar as they
replace InterlIsp- facilities (e.g., SUBSYS).

5. SYSOUT. The current Interlisp-VAX SYSOUT facility dumps the
entire allocated virtual memory of the Lisp system (currently,
without any of the ‘shared’ Interlisp code over 1 MByte.) At some
future date, Berkeley UNIX will provide a mechanism which will
allow writing out individual pages and a page map, making SYSOUT
files more manageable.

6. Porting to other VAX operating systems. Many sites do not run the ---
Berkeley UNIX operating system, instead choosing VMS (the DEC-
supplied operating system for the VAX), or EUNICE (a UNIX
compatibility package developed at SRI.) These are candidates for

259 E. A. Feigenbaum

Appendix A P41 RR00785-09

.other implementations' of Interlisp-VAX. Because of Interllsp's
heavy use of the operating system's memory management facilities,
porting Interlisp-VAX to these other operating systems will
likely prove quite difficult.

III. WHAT WILL INTERLISP-VAX BE LIKE? --- --

Assuming the above tasks are completed, the question remains: what
will It be like? There are two Issues: in what way will Interllsp-VAX
differ from other Lisp implementations, and what performance can be
expected?

A. Comparison z Interlisp-VAX to other systems - --

Full Interlisp-VAX is Intended to be highly compatible with
Interlisp-10, to the point where many complex programs would move
gracefully between it and other Interlisp Implementations; the only areas
of incompatibility are those which are necessarily not shared between any
implementations: access to machine code within Lisp routines, etc. In
addition, there are currently no plans for *linked" function calls in
Interlisp-VAX, nor for a “block” compiler. These are minor difficulties.

Interlisp-VAX will be able to access some of the facilities of the
UNIX environment to good effect, e.g., one might imagine using it as an
interactive "shell" programming language.

Interlisp-VAX will not have any particular CAPABILITIES for bit-
mapped graphics.

Interlisp-VAX will have a larger 'small" arithmetic range.

B. Performance -

There are two major factors in the performance of Interlisp on the
VAX: the first is in the actual CPU time to complete various operations,
and the second is in the amount of time spent paging.

1. CPU performance --

The performance profile of a Lisp system is complex, and there are
many areas where Interlisp-VAX's relative performance to other Interlisp
implementations will vary over a wide range. There seem to be a few areas
of critical performance to any program: function call, variable reference,
data structure access, arithmetic, and garbage collection. An appropriate
weighted average of performance in those areas Is a good overall measure of
total system performance.

E. A. Feigenbaum 260

P41 RR00785-09 Appendix A

One important way of estimating performance of Interlisp-VAX is to
use the code in other Lisp implementations for the same task as a
comparison, taking into account the differences in the various code
sequences. Comparisons are made between Interlisp-VAX and Franz, NIL, and
Interlisp-10.

a. Function call and return - ---

A function call for Interlisp-VAX will be at least twice as slow as a
similar function call in Franz Lisp, partly because of language
requirements (Franz does not check that the number of arguments passed
matches the number of arguments expected) and partly because of the design
of the Interlisp-VAX stack format (variable names are pushed as well as the
values.)

In Franz Lisp, a minimal call/return takes 17 microseconds (VAX
11/780). Call/return in Interlisp-VAX may be as high as 100 microseconds,
although the average will most likely be nearer to 40 microseconds.

In Interlisp- on a DEC 2060, a block-internal call takes on the
order of a microsecond (PUSHJ. POPJ), the minimal (non-block) call/return
takes 57 instructions (roughly 25 microseconds) while some functions,
because of the Interlisp Swapper, may take more than 200 instructions for
call/return (100 microseconds). The variation in function call time will
apparently be high for Interlisp-VAX and Interlisp-10; for some functions,
Interlisp-VAX function call will be slightly faster; for calls which in
Interlisp- would be block internal, an Interlisp-VAX call might be 50
times slower. Note that benchmarks which purport to make comparisons with
Interlisp- should explicitly control for the possibly enormous variation
in Interlisp- function call time.

b. Variable reference -

Performance ON LOCAL variable reference in Franz and Interlisp-VAX
will be similar if Interlisp-VAX delivers its optimizing, register
allocation code generator. Currently, variable reference will often be
slightly slower. More Importantly, free variable access will be very
significantly slower in Interlisp-VAX, even after a variable caching scheme
is implemented, because of the cost of variable lookup when using deep
binding.

c. Garbage collection -

The "stop and copy" variety of garbage collection, while compacting
the address space and thus reducing the working set of subsequent
computations, is more expensive in CPU time and memory usage than the 'mark
and sweep" variety, by a nominal factor of two. Garbage collections, even
using mark and sweep, for large address space systems can be expensive. A
full VAXSYMA garbage collection is reported to take on the order of 3
seconds cpu time. A garbage collection of a 2 MByte address space in
Rutgers Lisp [Hedrick] on a 2060 with extended virtual addressing
reportedly took 20 seconds cpu time. These figures are not particularly

261 E. A. Feigenbaum

Appendix A P41 RR00785-09

consistent. It seems likely that (1) garbage collection Is swap limlted,
and (2) the respective operating systems used to gather those times do not
do a particularly good job of filtering out swap overhead from cpu time. It
is not unreasonable to expect, however, that a Interlisp-VAX garbage
collection will take twice as long as a Franz Lisp collection, because of
the intrinsic overhead of 'stop and copy" over 'mark and sweep".

An alternative computation can be made as follows: Assuming an
Interlisp-VAX system to use 4 MBytes of memory, then with a compacting
garbage collection but no other memory localization algorithms, I believe
that most user programs would "dirty" at least l/4 of all system pages
(i.e., 1 MByte) within a relatively small amount of time. Let us suppose a
garbage collection occurs after a user has allocated the equivalent 40K
CONS cells, or .32 MB of storage. This would involve referencing 1.6 MB of
memory. This would mean that a garbage collection would take, at a minimum,
between 2 and 20 seconds of CPU time on a VAX 11/780.

23. Paging Performance and Real Memory Requirements

I spent a considerable amount of time trying to estimate the number
of users or sizes of Lisp systems that some typical VAX configurations
might support. I believe that this is one of the most important factors in
Interlisp-VAX performance, because of the predicted large virtual address
spaces of Interlisp-VAX programs (one of the main reasons for going to
Interlisp-VAX in the first place.)

a. Operating system considerations -

Interlisp-VAX will be implemented on top of the Berkeley UNIX
operating system. Another possible candidate for a host operating system is
a UNIX compatibility package by the name of EUNICE, written at SRI, which
runs under DEC-supplied operating system VMS. There is iome controversy
over the relative performance and functionality of VMS vs. UNIX. A fairly
comprehensive set of benchmarks [Kashtan] showed that VMS out-performed
UNIX in a variety of paging configurations. It is claimed by the Berkeley
UNIX implementors that (a) many of the benchmarks were atypical of real
computations, and (b) tests were run on an early version of Berkeley UNIX,
and performance has improved considerably since then. I believe that the
choice of operating system can be made on grounds other than predicted
performance for running Interlisp: reliability, maintenance, cost, etc. and
further, that converting Interlisp-VAX to run under EUNICE rather than
Berkeley UNIX will be a relatively minor job compared to the magnitude of
the Interlisp-VAX implementation itself. It seems that the difference
between operating systems makes for only a relatively small factor in the
overall performance, if the real memory available is too small to hold the
"working set' of the programs attempting to run at any one time.

b. Real memory requirements c Interlisp-VAX --

There are a variety of ways of estimating memory needs. The best
estimates seem to come from: (11 comparison with MACSYMA in Franz Lisp
(VAXSYMA), (2) comparison with Interlisp- and Interlisp-D.

E. A. Feigenbaum 262

P41 RR00785-09 Appendix A

I> Virtual Address space (minimum). Many current Interlisp-
programs run with a virtual address space of 2 MByte (2 full "forks"). A
similar system, in Interlisp-VAX, will probably require 4 MByte of address
space because: (1) there is expansion for 32 rather than 18 bit addresses
(no CDR coding); (2) the copying garbage collector will require, when it
runs, twice the allocated space; and (3) Interlisp-VAX allocates storage in
quanta of 64 KByte sectors rather than a 2 KByte "page" as in Interlisp-10,
giving more "breakage" per datatype. This figure is consistent with numbers
extrapolated from Interlisp-D.

2) Working set. In current Interlisp-10, the "working set" of many
programs is .5 MByte or more (that is, the amount of real memory outside of
the "system" necessary to keep the program from spending more than half of
its time paging). Extrapolating using the same figures as above, the
working set of a 'typical" Interlisp-VAX application will be over 1 MByte.
This figure is consistent with memory requirements extrapolated from
Interlisp-D.

3) Calculation of real memory requirements. If there are i users, j
of whomare active,

--
they will need i*31 KBytes of page table (31 KByte = 4

MByte/l28), plus .75*j MByte bytes for their working set. For example, 5
users, 2 of whom are actively running at any one time, would require less
than 2 MByte of real memory (outside of i/o buffers, etc.).

However, if systems increase in allocated space (independent of the
working set) because more programming or data is contained in their virtual
address space, one might imagine a situation where the virtual address
spaces were in the 20-30 MByte range. (Many users do not believe that a
2**24 byte virtual address space, 16 MByte, is big enough for applications
they plan in the near future.) In such a situation, each such Interlisp
process would require as much as .2 MByte of real memory for its page
table, independent of its activity. This might severely limit the number of
users who could be active on the system at any one time.

c. Problem areas -

There are some problem areas, both with UNIX and with VMS, which will
have to be resolved:

1) Sharing. VMS currently has more flexibility in allowing sharing of
space among users in a piecemeal fashion. In the current Interlisp-VAX
design, only .l MBytes of the address space are 'pure' in the sense that
Berkeley UNIX would allow it to be shared among multiple users. Insofar as
multiple users have the same large virtual address space (e.g., they are
running the same program with a large, fairly static 'knowledge base"),
sharing is important to improving the number of users allowable at any one
time.

2) Problems with large virtual address space. VMS requires disk/swap
space to be pre-allocated, at system generation time, for the maximum
allowable in the system. With multiple users with large address space
programs, this adds considerably to the amount of disk space required on

263 E. A. Feigenbaum

Appendix A P41 RR00785-09

the system (even if most of those users are inactive.) In addition, VMS
requires an additional swap file to be pre-allocated, which contains J*W
pages, where J is the maximum number of processes with independent address
spaces (100 would not be an unreasonable figure for a machine used by many
users for editing, background processing,‘ etc.> while W is the maximum
'working set' of a single process (which, for large address space processes
should be at least 2 MByte.)

On the other hand, Berkeley UNIX currently requires the page tables
of all processes to be 'locked down', which may be a significant drain for
very large address space programs where the data in the address space is in
fact infrequently referenced.

IV CONCLUSIONS: WHITHER INTERLISP VAX A

A. There aren't any good alternatives ---

Given the requirements of TECHNOLOGY transfer to universities,
industrial and military sites, there are few other options: even though
Interlisp-VAX will probably not be cost effective for intensive Lisp users,
it may be for those whose requirements are for casual and occasional use of
Interlisp or tools developed in It. There are a few alternatives which
could benefit from further exploration:

Interlisp-
There is a version of Interlisp for IBM/370 machines, originally developed
at Uppsala University and modified at the Weizmann Institute [Raiml.
Interlisp- might be a possibility for some sites, although reports from
several sources are that the Interlisp- is incomplete, and not
particularly Compatible with other InterliSpS, and has serious performance
and reliability problems. However, I believe-that this alternative should
be more seriously explored.

Implementing Interlisp on top of NIL or Franz ----
This might have been a reasonable way to approach the initial Interlisp-VAX
implementation, but it does not seem cost effective at this point.

Emulating Interlisp-D on a VAX ---
An alternative, not presently explored in any detail, would be to write an
Interpreter for Interlisp-D byte codes and run Interlisp-D on a VAX (cf.
[Rowan]). Performance would be poor (perhaps a factor of 4-5 slower than
currently projected), but code would be more easily transportable.

Automatic conversion of Interlisp programs to Other VAX Lisps ---
This is an approach which has rarely SUCCeeded. Programs which convert
between language dialects are heuristic at best, and require considerable
hand-holding; for any particular program, converting to another language
might be cost effective, but on the whole, it is not.

E. A. Feigenbaum 264

P41 RR00785-09 Appendix A

& Performance: mixed results

Performance in the Lisp community is often measured in DEC KA-10 or
KL-10 equivalents, e.g., 'l/4 of the speed as on a KL-IO." One would like
to be able to draw the inference that, if a KL-10 adequately supports 40
users with 8 actively computing (the rest editing, reading mail, etc.), l/4
of that would amount to 10 users with 2 actively computing. Unfortunately,
these performance figures can be misleading, first because of the wide
variation in Interlisp- speeds on the same problem, and second because
timings on small benchmarks do not give an accurate picture of the number
of active users who can be supported in a working environment.

More reasonable estimations of performance can be drawn from
experience with VAXes running Franz Lisp or VAXSYMA; while no exact figures
are available, experience has been that a VAX 11/780 with 4 MByte real
memory can support 30 users, of whom 3 are actively using VAXSYMA.
Interlisp working-set and virtual address space requirements will exceed
those of VAXSYMA.

Although the VAX is purported to b8 quite cost effective for FORTRAN,
the instruction set is not PARTICULARLY effective for Lisp, and even less
so for Interlisp; the "CALLS" instruction, which is intended to be used for
function calls in high level languages, assumes a model of the stack which
does not match Interlisp's. While the Interlisp-VAX design takes advantage
of "CALLS. in a clever way, function call is still relatively mor8
expensive than It is on microcoded machines which can have an Interlisp-
specific function call instruction.

Virtual address space and real memory --
Although the VAX is a large virtual address space machine, the address
space may not be particularly usable on configurations typical in many
installations. For example, the following configurations were proposed as
"typical" VAX installations:

VAX-II/750 with 2 MByte real memory (maximum for 750)

VAX 11/780 with 4 MByte real memory

VAX II/780 with 8 MByte real memory (requires additional
memory controller)

Also proposed are configurations not Currently available: "Single-
user' VAX machines with memory in the l-2 MByte range, or 750's and 780's
with more memory (requiring 64K RAM chips.)

Because of Interlisp-VAX's large virtual address space and working
set, a machine with only 2 MByte of real memory might be able to support at
most one or two large address space active users at a time. Generous
amounts of disk, swapping space, and real memory will be required -- more
so than in Interlisp- to support the same users, and much more so than in
Interlisp-D or Interlisp-Jericho. Very few time-sharing systems have
adequately dealt with giant address spaces for multiple users. The success

265 E. A. Feigenbaum

Appendix A P41 RR00785-09

of very large-address-space Interlisp-VAX will depend on the cooperation
and support of the Berkeley UNIX implementors.

C. There is much left to do ---- ---

There is an unfortunate tendency to underestimate the magnitude of
the task of transporting a system the size and complexity of Interlisp.
Interlisp Is not merely an interpreter and a few utility routines, but a
rich and complex programming environment, with facilities which were
heavily influenced by Tenex, its original host operating system. Porting it
to another machine and continuing to Upgrad it is a major undertaking. I
cannot stress this enough.

The publication of the Interlisp Virtual Machine specification
[Moore], was an important step forward in the creation of transportable
Interlisp, In that it identified a major portion of what the "higher-level*
Interlisp support software required in order to run. Unhappily, as complete
and well written as that document was, it is not an accurate guide for the
construction of a useful Interlisp implementation, in that many areas are
designated as being left to th8 Implementor while many InterliSp
applications require exact compatibility with Interlisp-10. The VM is also
not a good measure of the magnitude of implementing Interlisp. For example,
the VM mentions the compiler only in passing; however, providing a
reasonable Interlisp compiler is a major portion of the task of
transporting Interlisp to a new (non-microcoded) machine.

Transporting Interlisp is harder than merely implementing "some" Lisp
dialect. It is much more difficult to be strictly compatible while using
the underlying power of the machine to the fullest. Compatibility makes
the implementation harder because there is an existing standard against
which the implementation can be judged. For a *new' Lisp, it is always
possible to declare oneself 'done' at almost any point. The necessity of
emulating exactly tha behavior of another system is what makes the task
more difficult.

How much is left to do? ------
It is difficult to give a "man-month" figure for Interlisp-VAX for several
reasons. First, of cours8, th8 notion of 'man-month independent of
implementor is a well-known paradox: start-up time and personnel training,
can delay a project for many months (as in th8 early months of the
Interlisp-VAX project).

Second, there are several tasks ahead which will undoubtedly
encounter unforeseen problems. 'System shakedown" is a catch-all phrase
which can cover many months of discovering problems or previously
undetected system requirements. Software completion is not measurad well by
proportion of llnes-of-code written.

Finally, there is a wide range of variation of what is meant by
'Interlisp-VAX.. On the one hand, an initial version may b8 available
relatively soon. This version will likely have serious performance problems
(mainly because of free variable reference and non-tuned code generation),

E. A. Felgenbaum 266

P41 RR00785-09 Appendix A

and will likely be not fully functional or compatible with Interlisp-10.
The task of bringing Interlisp-VAX to the level of functionality,
performance and reliability of Interlisp- and Interlisp-D remains
awesome.

Unfortunately, there is not a good perception in the Interlisp user
community of the amOUnt of work between the first release and a System
which will be acceptable to Current Interlisp users; for this reason. the
recent "pre-announcement. message [Dyer] was at best misleading for those
trying to make plans based on Interlisp-VAX availability. While this
initial version might in fact be a reasonable alternative to, say,
converting a large Interlisp program to Franz Lisp, (because the conversion
cost would be higher than the performance difference would warrant), it
will not be comparable with most other Interlisp implementations (-10, -D,
-Jericho).

The Interlisp-VAX project is and has been from the beginning
drastically undermanned. The initial proposal for implementation of
Interlisp-VAX in one year with no existing personnel was at best wishful
thinking. Hans Koomen will be leaving within the near future. This is a
serious, although possibly not fatal, blow to th8 continuation of th8
project, even with the addition of additional staff members (Ray Bat8S and
Don Voreck).

The project needs a team of implementors who are committed to its
goals, are qualified to carry it out, and will stick with th8 project once
the initial release has been made: if InterlISp-VAX is to be viable, there
needs to be a long-term (3-4 year) commitment to its maintenance and
support by a team of qualified personnel. This level of support or greater
has b88n required by every other SeriOUS implementation Of Lisp that I know
of, including Interlisp-10, Interllsp-D, Interlisp-Jericho, and Lisp
Machine Lisp. There Is no reason why anyone should imagine that Interlisp-
VAX would be different.

NOTES

(1)VA.X is a trademark of Digital Equipment Corporation.
(2)Unix is a trademark of Bell Laboratories.

267 E. A. Feigenbaum

Appendix A P41 RR00?85-09

BIBLIOGRAPHY

Burton, R.R., et al. -- .Interlisp-D: Overview and Status." In Papers on
Interlisp-D, Xerox Palo Alto Research Center, CIS-5 (SSL-80-4),
1980.
*(Describes the Interlisp-D implementation effort, including some
words of wisdom on why implementing Interlisp is hard.1

Dyer, D., et al. -- INTERLISP-VAX. Message-ID: <[USC-ISIB]17-Jul-81
lS:lO:lO.MILLAR>
*(This was the 'official pre-announcement of the availability of
Interlisp-VAX:)

Hedrick, Charles. Some Tests of Big Core Images. [Message file] Rutgers ---
University. 30 May 81 0447-EDT.
*(Discusses ELISP implementation on extended address 2060.)

Kashtan, David. UNIX and VMS: Some Performance Comparisons. [Message ----
file] SRI International.
*(Compares performance of VAX/VMS version 1.6 and VM UNIX
Berkeley version 2.1.)

Masinter, L. M. and Deutsch, L. P. .Local Optimization in a Compiler for
Stack-based Lisp Machines: In Papers on Interllsp-D, Xerox Palo
Alto Research Center, CIS-5 (SSL-80-4). 1980.
*(Describes the byte compiler.)

Moore. J. The Interlisp Virtual Machine Specification. Xerox Palo Alto
Research Center, CSL 76-5, revised March 1979.

Raim. Martin. Personal communication.

Rowan, William. A Lisp Compiler Producing Compact Code. LISP Conference
proceedings. 1980.
*(A byte-code interpreter for compiled MacLisp.)

Teitelman, W. and Masinter, L. The Interlisp Programming Environment.
IEEE Computer, April 1981-p. 25-33.
*(Overview of Interlisp.)

E. A. Feigenbaum 268

P41 RR00785-09 Appendix B

Appendix B

AI Handbook Outline -

Volumes I and II by Avron Barr and Edward A. Feigenbaum
Volume III by Paul R. Cohen and Edward A. Feigenbaum

Computer Science Department
Stanford University

This is a list of the Chapters in the Handbook. A list of all of the
articles in each Chapter follows.

VOLUME I:
I. Introduction

II. Search
III. Knowledge Representation

IV. Understanding Natural Language
V. Understanding Spoken Language

VOLUME II:
VI. Programming Languages for AI Research

VII. Applications-oriented AI Research: Science
VIII. Applications-orlented AI Research: Medicine

IX. Applications-oriented AI Research: Education
X. Automatic Programming

VOLUME III:
XI. Models of Cognition

XII. Automatic Deduction
XIII. Vision

XIV. Learning and Inductive Inference
XV. Planning and Problem Solving

269 E. A. Feigenbaum

Appendix B

VOLUME I --

I. INTRODUCTION

P41 RR00785-09

A. Artificial Intelligence
B. The AI Handbook
C. The AI literature

II. SEARCH

A.
B.

C.

D.

Overview
Problem representation
1. State-space representation
2. Problem-reduction representation
3. Game trees
Search methods
1. Blind state-space search
2. Blind AND/OR graph search
3. Heuristic state-space search

a. Basic concepts in heuristic search
b. A*--Optimal search for an optimal SOlUtlOn
c. Relaxing the optlmallty requirement
d. Bidirectional search

4. Heuristic search of an AND/OR graph
5. Game tree search

a. Minimax procedure
b. Alpha-beta pruning
c. Heuristics in game tree search

Sample search programs
1. Logic Theorist
2. General Problem Solver
3. Gelernter's geometry theorem-proving machine
4. Symbolic integration programs
5. STRIPS
6. ABSTRIPS

III. KNOWLEDGE REPRESENTATION

A. Overview
B. Survey of representation techniques
C. Representation schemes

1. Logic
2. Procedural representations
3. Semantic networks
4. Production systems
5. Direct (analogical) representations
6. Semantic primitives
7. Frames and scripts

E. A. Feigenbaum 270

P41 RR00785-09 Appendix B

IV

V.

VI

UNDERSTANDING NATURAL LANGUAGE

A. Overview
B. Machine translation
C. Grammars

1. Formal grammars
2. Transformational grammars
3. Systemic grammar
4. Case grammars

D. Parsing
1. Overview of parsing techniques
2. Augmented transition networks
3. The General Syntactic Processor

E. Text generation
F. Natural language processing systems

1. Early natural language systems
2. Wilks's machine translation system
3. LUNAR
4. SHRDLU
5. MARGIE
6. SAM and PAM
7. LIFER

UNDERSTANDING SPOKEN LANGUAGE

A. Overview
B. Systems architecture
C. The ARPA SUR projects

1. HEARSAY
2. HARPY
3. HWIM
4. The SRI/SDC speech systems

VOLUME II --

PROGRAMMING LANGUAGES FOR AI RESEARCH

A.
B.
C.

D.

Overview
LISP
AI programming-language features
1. Overview
2. Data structures
3. Control structures
4. Pattern matching
5. Programming environment
Dependencies and assumptions

271 E. A. Feigenbaum

Appendix B P41 RR00785-09

VII. APPLICATIONS-ORIENTED AI RESEARCH: SCIENCE

A. Overview
B. TEIRESIAS
C. Applications in chemistry

1. Chemical analysis
2. The DENDRAL programs

a. Heuristic DENDRAL
b. CONGEN and its extensions
c. Meta-DENDRAL

3. CRYSALIS
4. Applications in organic synthesis

D. Other scientific applications
1. MACSYMA
2. The SRI Computer-based consultant
3. PROSPECTOR
4. Artificial Intelligence in database management

VIII. APPLICATIONS-ORIENTED AI RESEARCH: MEDICINE

A. Overview
B. Medical systems

1. MYCIN
2. CASNET
3. INTERNIST
4. Present Illness Program
5. Digitalis Therapy Advisor
6. IRIS
7. EXPERT

IX. APPLICATIONS-ORIENTED AI RESEARCH: EDUCATION

A. Overview
B. ICAI systems design
C. Intelligent CA1 systems

1. SCHOLAR
2. WHY
3. SOPHIE
4. WEST
5. WUMPUS
6. GUIDON
7. BUGGY
8. EXCHECK

D. Other applications of AI to education

X. AUTOMATIC PROGRAMMING

A. Overview
B. Methods of program specification
C. Basic approaches

E. A. Felgenbaum 272

P41 RR00785-09 Appendix B

D. Automatic programming systems
1. PSI and CHI
2. SAFE
3. The Programmer's Apprentice
4. PECOS
5. DEDALUS
6. Protosystem-1
7. NLPQ
8. LIBRA

VOLUME III --

XI. MODELS OF COGNITION

A.
B.
C.
D.
E.

F.

Overview
General Problem Solver
Opportunistic problem solving
EPAM
Semantic network models of memory
1. Quillian's semantic memory system
2. HAM
3. ACT
4. MEMOD
Belief systems

XII. AUTOMATIC DEDUCTION

A. Overview
B. The resolution rule of inference
C. Nonresolution theorem proving
D. The Boyer-Moore theorem prover
E. Nonmonotonic logic
F. Logic programming

XIII. VISION

A. Overview
B. Blocks-world understanding

1. Roberts
2. Guzman
3. Falk
4. Huffman-Clowes
5. Waltz
6. Shirai
7. Mackworth
8. Kanade

C. Early processing of visual data
1. Visual input
2. Color

273 E. A. Feigenbaum

Appendix B P41 RR00785-09

3. Preprocessing
4. Edge detection and line finding
5. Region analysis
6. Texture

D. Representation of scene characteristics
1. Intrinsic images
2. Motion
3. Stereo vision
4. Range finders
5. Shape-from methods
6. Three-dimensional shape description

and recognition
E. Algorithms for vision

1. Pyramids and quad trees
2. Template matching
3. Linguistic methods for computer vision
4. Relaxation algorithms

F. Vision systems
1. Robotic vision
2. Organization and control of vision systems
3. ACRONYM

XIV. LEARNING AND INDUCTIVE INFERENCE

A. Overview
B. Rote learning

1. Issues
2. Rote learning in Samuel's Checkers Player

C. Learning by taking advice
1. Issues
2. Mostow's operationalizer

D. Learning from examples
1. Issues
2. Learning in control and

pattern-recognition systems
3. Learning single concepts

a. Version space
b. Data-driven rule-space operators
C. Concept learning by generating and

testing plausible hypotheses
d. Schema instantiation

4. Learning multiple concepts
a. A011
b. Meta-DENDRAL
c. AM

5. Learning to perform multiple-step tasks
a. Samuel's Checkers Player
b. Waterman's Poker Player
c. HACKER
d. LEX
e. Grammatical inference

E. A. Feigenbaum 274

P41 RR00785-09

xv. PLANNING AND PROBLEM SOLVING

A.
B.
C.
D.

E.

Overview
STRIPS and ABSTRIPS
Nonhierarchical planning
Hierarchical planners
1. NOAH
2. MOLGEN
Refinement of skeletal plans

275

Appendix B

E. A. Feigenbaum

